A statistical model describing combined irreversible electroporation and electroporation-induced blood-brain barrier disruption
نویسندگان
چکیده
BACKGROUND Electroporation-based therapies such as electrochemotherapy (ECT) and irreversible electroporation (IRE) are emerging as promising tools for treatment of tumors. When applied to the brain, electroporation can also induce transient blood-brain-barrier (BBB) disruption in volumes extending beyond IRE, thus enabling efficient drug penetration. The main objective of this study was to develop a statistical model predicting cell death and BBB disruption induced by electroporation. This model can be used for individual treatment planning. MATERIAL AND METHODS Cell death and BBB disruption models were developed based on the Peleg-Fermi model in combination with numerical models of the electric field. The model calculates the electric field thresholds for cell kill and BBB disruption and describes the dependence on the number of treatment pulses. The model was validated using in vivo experimental data consisting of rats brains MRIs post electroporation treatments. RESULTS Linear regression analysis confirmed that the model described the IRE and BBB disruption volumes as a function of treatment pulses number (r(2) = 0.79; p < 0.008, r(2) = 0.91; p < 0.001). The results presented a strong plateau effect as the pulse number increased. The ratio between complete cell death and no cell death thresholds was relatively narrow (between 0.88-0.91) even for small numbers of pulses and depended weakly on the number of pulses. For BBB disruption, the ratio increased with the number of pulses. BBB disruption radii were on average 67% ± 11% larger than IRE volumes. CONCLUSIONS The statistical model can be used to describe the dependence of treatment-effects on the number of pulses independent of the experimental setup.
منابع مشابه
Neurosurgical Techniques for Disruption of the Blood–Brain Barrier for Glioblastoma Treatment
The blood-brain barrier remains a main hurdle to drug delivery to the brain. The prognosis of glioblastoma remains grim despite current multimodal medical management. We review neurosurgical technologies that disrupt the blood-brain barrier (BBB). We will review superselective intra-arterial mannitol infusion, focused ultrasound, laser interstitial thermotherapy, and non-thermal irreversible el...
متن کاملMRI Study on Reversible and Irreversible Electroporation Induced Blood Brain Barrier Disruption
Electroporation, is known to induce cell membrane permeabilization in the reversible (RE) mode and cell death in the irreversible (IRE) mode. Using an experimental system designed to produce a continuum of IRE followed by RE around a single electrode we used MRI to study the effects of electroporation on the brain. Fifty-four rats were injected with Gd-DOTA and treated with a G25 electrode impl...
متن کامل7.0-T Magnetic Resonance Imaging Characterization of Acute Blood-Brain-Barrier Disruption Achieved with Intracranial Irreversible Electroporation
The blood-brain-barrier (BBB) presents a significant obstacle to the delivery of systemically administered chemotherapeutics for the treatment of brain cancer. Irreversible electroporation (IRE) is an emerging technology that uses pulsed electric fields for the non-thermal ablation of tumors. We hypothesized that there is a minimal electric field at which BBB disruption occurs surrounding an IR...
متن کاملElectroporation of Brain Endothelial Cells on Chip toward Permeabilizing the Blood-Brain Barrier.
The blood-brain barrier, mainly composed of brain microvascular endothelial cells, poses an obstacle to drug delivery to the brain. Controlled permeabilization of the constituent brain endothelial cells can result in overcoming this barrier and increasing transcellular transport across it. Electroporation is a biophysical phenomenon that has shown potential in permeabilizing and overcoming this...
متن کاملDBS-relevant electric fields increase hydraulic conductivity of in vitro endothelial monolayers.
Deep brain stimulation (DBS) achieves therapeutic outcome through generation of electric fields (EF) in the vicinity of energized electrodes. Targeted brain regions are highly vascularized, and it remains unknown if DBS electric fields modulate blood-brain barrier (BBB) function, either through electroporation of individual endothelial cells or electro-permeation of barrier tight junctions. In ...
متن کامل